This article takes an in-depth look at the types of aluminum.
Read further and learn more about:
What is Aluminum?
Aluminum Grades
Applications of Aluminum Grades
Types of Aluminum Products
And much more…
Stacked Aluminum Coil
Chapter 1: What is Aluminum?
Aluminum is the most abundant metal in Earth’s crust but rarely exists in elemental form. The various forms of aluminum and its alloys are valued for their low density and high strength-to-weight ratio, durability, and corrosion resistance. Since aluminum is 2.5 times less dense than steel, it is an excellent alternative to steel in applications requiring mobility and portability.
The many aluminum alloys are ductile and malleable, making them easy to form and machine. They are good electrical and thermal conductors with non-sparking and non-magnetic properties. Aluminum is recyclable, with a low re-melting temperature that requires 5% of the energy needed to produce the primary metal. Seventy-five percent of aluminum can be recovered for reuse without losing its properties, which makes aluminum sustainable and environmentally friendly.
Aluminum Products
Chapter 2: Aluminum Grades
Pure aluminum is combined with different alloying elements to modify its mechanical properties, corrosion resistance, and formability and machinability, which determines the various grades. The Aluminum Association created and is responsible for maintaining the nomenclature for the standard aluminum grades, which are categorized according to their main alloying element and mechanical and thermal treatment response.
There are two main classifications of aluminum alloys: wrought and cast aluminum. Each classification has a different identification numbering system to distinguish it. Wrought and cast aluminum are differentiated by how they are processed, with cast aluminum being melted and poured into a mold, while wrought aluminum is worked in solid form.
The different manufacturing processes produce grades of aluminum alloys with unique properties. The classifications add to the difficulty of determining which grade of aluminum to use for a project. Cast aluminum has a higher percentage of alloying material, while wrought aluminum has greater tensile strength.
Wrought Aluminum
Wrought aluminum has exceptional mechanical strength and can be formed into many shapes. It is produced by smelting aluminum ingots with a measured amount of an alloying metal, resulting in the grade’s composition. The smelted aluminum alloy is cast into billets or slabs and mechanically processed by rolling, forging, or extrusion. Heat treatment further improves the aluminum alloy’s natural properties.
The advantages of wrought aluminum include:
Exceptional mechanical properties
Structural integrity without defects
Smooth, even surface finish
Excellent weldability and machinability
Formability – can be transformed, shaped, machined, and extruded into any possible shape.
A four-digit number code identifies each wrought aluminum grade:
The first digit indicates the primary alloying element added to the pure aluminum. The primary alloying element affects the grade’s properties in a series.
The second digit refers to the modification of an alloy. The modifications are registered with the IADS, which requires specific documentation. If the designated number is zero, the alloy is original or unmodified.
The third and fourth digits are arbitrary numbers assigned to a specific alloy in the series. For the 1000 series, these digits indicate the purity of the alloy.
The table below summarizes the wrought aluminum series. Series 1000 is the purest form of aluminum with the lowest yield and tensile strength, while the 7000 series, with alloys of magnesium, zinc, and copper, has the highest tensile and yield strength.
Wrought Aluminum Series
Temper Composition Tensile Strength (MPa) Yield Strength (MPa)
1000 Series 99.00%-99.99% Aluminum 82-166 28-152
2000 Series 2.2%-6.8% Copper 110-283 41-248
3000 Series 0.3%-1.5% Manganese 110-283 41-248
4000 Series 3.6%-13.5% Silicon 172-414 45-180
0.1%-4.7% Copper
0.05%-5.5% Magnesium
5000 Series 0.05%-5.5% Magnesium 124-352 41-345
6000 Series 0.2%-18% Silicon 124-310.3 55.2-276
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
A four-digit code that includes a decimal value is assigned to each cast aluminum grade:
The first digit indicates the primary alloying element of the grade or series.
The second and third digits are arbitrary except for the 1XX.X series. For these series, these digits indicate the purity of the pure aluminum alloy.
The last digit indicates whether the alloy is a casting (“.0”) or an ingot (“.1” or “.2”).
Cast Aluminum Alloys
Grade Composition (wt%) Tensile Strength (MPa) Yield Strength (MPa)
1XX.X 99.00%-99.99% Aluminum 131-448 28-152
2XX.X 4.00%-460% Copper 131-276 90-345
3XX.X 5.00%-17.00% Silicon 117-172 66-172
4XX.X 5.00%-12.00% Silicon 117-172 41-48
5XX.X 5.00%-12.00% Magnesium 131-448 62-152
6XX.X Not Used
7XX.X 6.20%-7.50% Zinc 207-379 117-310
The following are the cast aluminum alloy series:
1XX.X Series
1XX.X series aluminum grades have high electrical and thermal conductivity, good weldability, and excellent corrosion resistance and finishing properties.
2XX.X Series
2XX.X series aluminum grades are heat-treatable. They have high strength and low fluidity. However, they have low corrosion resistance and ductility and are susceptible to hot cracking.
3XX.X Series
3XX.X series aluminum grades are heat-treatable. They have high strength and good wear and cracking resistance. However, the increased copper content can make the grade less resistant to corrosion. They also have lower ductility.
4XX.X Series
4XX.X series aluminum grades are non-heat-treatable and have moderate strength. They have good machinability due to their high ductility. They also have good impact resistance, corrosion resistance, and casting properties.
5XX.X Series
5XX.X series aluminum grades are non-heat-treatable. However, they have good corrosion resistance and an attractive appearance when anodized. In addition, they have moderate-to-high strength, good machinability, and casting properties.
7XX.X Series
7XX.X series aluminum grades are heat-treatable. They have high strength, good corrosion resistance, dimensional stability, and good finishing qualities. However, they have poor casting properties.
8XX.X Series
8XX.X series aluminum grades are non-heat-treatable. They have good machinability and wear resistance due to their low coefficient of friction. However, they have low strength.
Temper Designations of Aluminum Alloys
The temper designation system is useful in determining the response of a certain alloy to welding and other fabrication processes, which depends on the strengthening and hardening processes it has undergone. This system is used by both wrought and cast aluminum alloys.
The temper designation of an aluminum alloy is composed of a capital letter followed by a number or numbers for strain-hardened and thermally treated alloys. It is separated by a hyphen from the alloy numbering (e.g., 5052-H32).
The first character in a temper designation indicates the main classification of treatment.
For strain-hardened alloys, the first and second digits indicate the operation after strain hardening and the degree of strain hardening, respectively.
For thermally-treated alloys, the first digit indicates the thermal treatment condition.
Letter Treatment
F As fabricated alloys, no treatment was performed.
O Annealed
H Strain-hardened or cold-worked
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Chapter 4: Aluminum Forms
Aluminum products can come in the following forms:
Aluminum Foils
Aluminum foils are manufactured by flattening and reducing the thickness of aluminum sheets using a roll mill. The thickness of aluminum foils ranges from 0.006 to 0.2 mm (or from 6 to 200 microns). Aluminum foils are malleable, pliable, and easily bent and wrapped around objects. They are used as packaging and electromagnetic shielding material, as well as in other industrial applications.
Aluminum Foil
Aluminum foil is used as thermal insulation material, decoration, and molds. It comes in different tempers that have their own process properties. The tempering for aluminum foil is referred to as its HXX state. The H in the tempering identification is in reference to the work hardening used to improve the strength of the foil. After the H are two or three numbers, with the first number being the type of tempering.
H1 – Strain hardened by cold working
H2 – Strain hardened and partially annealed
H3 – Strain hardened and stabilized
The second digit of the HXX code is the degree of strain hardening.
Aluminum Strain Hardening
Temper Type
Hx2 Quarter Hard
Hx4 Half Hard
Hx6 Three Quarters Hard
Hx8 Full Hard
Hx9 Extra Hard
A third digit may be assigned for wrought products, with H111, H311, and H321 indicating that the aluminum foil was strain hardened less than usual.
Aluminum Bars
Aluminum bars are available in round, flat, hexagonal, and square shapes and come in different degrees of thickness, width, and diameters. The process for selecting aluminum bars is based on the grade of aluminum that will fit the needs of an application since each grade has different strength, machinability, and corrosion resistance.
Aluminum Bars Report Card
Minimum Strength in KSI
Alloy Machinability Ultimate Yield Corrosion Resistance
2011-T3 A++ 45 38 C
6262-T6511 B 42 35 A
2017-T4, T451 A 55 32 C
2024-T4, T351 A 62 42 C
6061-T6-T651 B 42 35 A
7075-T6, T651 A 77 66 C
6063-T6 C 30 25 A
063-T5 D 21 15 A
Aluminum bars are produced using extrusion, which includes passing an annealed aluminum billet, under pressure, through a die using compressive force. As the billet is forced through the die, it takes on the die’s profile. Extrusion produces round, rectangular, square, and hexagonal bars.
Aluminum Bar Extrusion
Aluminum Bars
Aluminum Pipe
Aluminum pipe has a tubular shape that is used in the movement and flow of liquids and gases. As with all forms of aluminum, aluminum pipe is lightweight and corrosion resistant and manufactured using the extrusion process that produces seamless aluminum pipe. The primary shapes of aluminum pipe are round and square with types that are custom designed to fit a specific application.
Aluminum Pipes
The types of aluminum used for the production of aluminum pipe is high strength hard aluminum that is heat treated to enhance its strength. It has medium plasticity in its annealing, quenching, and thermal state with good spot welding characteristics. Aluminum pile is machinable using cold working and quenching and may have its corrosion properties improved with anodizing and coating.
There are an endless number of uses for aluminum pipe that include aviation, the auto industry, chemical processing, agriculture, and ship building. Its lightweight, good strength, and conductivity make it ideal for heavy duty industrial applications. The characteristics of aluminum pipe vary according to the grade of aluminum used to produce it.
Aluminum Tubes
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Zusammenfassung
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
XTJ ist ein führender OEM-Hersteller, der sich der Bereitstellung von Komplettlösungen für die Fertigung von CNC-Bearbeitung von 6061-Aluminium vom Prototyp bis zur Produktion widmet. Wir sind stolz darauf, ein nach ISO 9001 zertifiziertes System für Qualitätsmanagement zu sein, und wir sind entschlossen, in jeder Kundenbeziehung Mehrwert zu schaffen. Das tun wir durch Zusammenarbeit, Innovation, Prozessverbesserungen und außergewöhnliche Handwerkskunst.