Эти ЧПУ-обработка process offers many advantages because it is automated and uses computer-controlled machine tools to fabricate parts from raw materials. The process can produce many different parts with varying levels of complexity. CNC machining is often used in the aerospace, automotive, and medical industries, where specific parts must meet stringent specifications and tolerances in manufacturing processes.
ЧПУ-обработка has made it possible to create objects a hundred times faster than a few decades ago.
y
what is CNC machining and how does it work?
This article explores all you need to know about CNC machining, what it is, how it is done, different types and the benefits of the process.
What is CNC Machining?
CNC machining is a type of automated machining process that uses computer numeral control technology to shape an object or a part by removing material from a workpiece until the desired shape is achieved.
CNC stands for Computer Numerical Control. It means utilizing computerized software to control how a machine moves and operates.
It works by converting a digital model of a part into a sequence of computer instructions that control the actions of the machining tools to achieve the desired output
CNC machining equipment works on a variety of parts, such as metals, metal alloys, wood, stone, and more. The size of machine tools can vary based on the specific part that requires manufacturing.
Since it is computer-controlled, CNC machining can deliver superior levels of versatility, efficiency, and precision relative to other common manufacturing methods. This makes it a popular manufacturing choice for a vast range of industries and applications.
Who Invented CNC Machining?
Removing material using milling tools to shape an object has been an ongoing practice since ancient times. When it comes to the modern history of CNC machining though, the process of controlling machine tools through numerical control was invented in 1949 by John Parsons at MIT.
Development of CNC Machining
In 1949, MIT conducted a research project for the US air force to use motorized methods for creating helicopter blades and aircraft engines and frames. This is what gave rise to CNC technology.
Richard Kegg, in 1952, further improved the numerical control machining process, which led to CNC milling machines.
Due to the absence of computers, the automated nature of early CNC machining processes was made possible with the help of punched tape. With the advent of digital computing in the 1960s, the punched tape was replaced with computerized controls.
How Does CNC Machining Work?
CNC machining relies on computer programs to create the layout of the process in which the machine tool should function. Since users cannot directly communicate with the machine tools, Computer-Aided Design (CAD) software is used.
CAD software creates the 2-dimensional and 3-dimensional models for the required CNC machined parts. With this design, the machine knows what the final part looks like.
The computerized controls do the calculation required for removing material, so the workpiece looks like the final part created in the CAD software.
Let us go through the breakdown of various processes that occur during CNC machining.
The Four Stages of CNC Machining
CNC machining occurs in four stages:
Stage 1: Creating the CAD Model
Before CNC machining begins, the 2D or 3D model of the final design is required. This model is created in CAD software. There are many CAD software programs available online, free and paid.
Creating CAD models is not difficult and can easily be learned. However, some complex parts might require more experience with CAD, for which expert designers can be hired.
Stage 2: Converting CAD Model to CNC File
No CNC machine understands CAD language directly. CNC machines only recognize movement based on coordinates. Therefore, the CAD model must be converted to a CNC understandable file called G code.
Many CAD software programs can write the output file directly in G code by using the particular setting before saving the file.
In other cases, converting the CAD design to G code will require dedicated software called Computer Aided Manufacturing (CAM). CAM software is a very functional tool when it comes to the automation of machine processes.
Besides using CAM software, many simple free tools can convert simple CAD designs to G code with the click of a button. However, they don’t have the vast suite of features that CAM software offers.
Stage 3: Configuring the CNC Machine
Before starting manufacturing processes, the CNC machine must be set up the right way.
Think of this as configuring the printer before you print something. You need to feed the printer with pages and check specific settings. CNC machines operate similarly.
Before machining begins, there are many setup processes to complete. For instance, you must ensure the workpiece is properly positioned on the machine. The dies must also be set correctly, and other position settings.
Stage 4: machining operation execution
Once the configuration stage is complete, the machine operation can begin. For this, you can execute the program on the display panel of the CNC machine.
Depending on what you design, you might have to go through various program prompts to choose different types of settings and options.
Once the CNC program is executed, the machine keeps going till the end of the program. It only stops if switched off by the operator or in the case of an unexpected error or power disruption.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
G-код
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Фрезерование ЧПУ
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Сверление ЧПУ
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Протяжка
cURL Too many subrequests.
Sawing
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Шлифовка
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Плазменные резаки
Plasma cutters are an evolved form of cutting technology, using a high-temperature plasma jet to cut material. The plasma is created by an electrical arc, so this method applies to conductive materials only.
Laser Cutters
Laser cutters use a laser beam to cut through a material. Unlike plasma cutting, laser cutting is not limited to the cutting of electrically conductive materials. Laser beams can cut through anything by adjusting the laser parameters.
Flame Cutters
Flame cutting uses an Oxy-acetylene (also known as Oxy-fuel) gaseous mixture to cut through metals. When the Oxy-fuel stream is narrowed and ignited, it creates an ultra-high temperature flame that can easily cut through metal.
Гидравлические прессы
The purpose of Press Brakes is to bend metal plates and sheets. The material is placed between a V-shape or a U-shape die. Then the die is pressed, resulting in the bend as required.
Electric Discharge Machines (EDM)
Electrical Discharge Machines (EDMs) are used for cutting conductive materials. In EDM, electrical pulses are emitted by a cutting head near the material, which creates an electrical arc. This arc melts and removes the material at the required position resulting in a cut.
Гидроабразивные резаки
Waterjet cutters utilize ultra high-pressure water for the cutting action. These cutters can cut through anything: metal, alloy, wood, stone, or glass. The water jet stream is controlled by CNC and moved according to the software.
Selecting the right CNC machine for the job
When making CNC machined parts, it is important to figure out which type of machine is most suitable for the parts in question.
Every machine has its pros and cons, but it is difficult to find every kind of CNC machine in one place — except maybe at a machine trade show, or in a CNC shop willing to invest lots of money.
If the most suitable machine is not available, you need to find a way to make the parts with the machines that are available. Here are some explanations of vertical vs horizontal milling and turning machines.
Figuring out the best way to load the workpieces
When you have chosen the CNC machine to make your parts, the next step — before programing — is to find the best way to load your workpieces in order to gain the best machined result. I believe this stage is more important than making the tool paths, but in my experience, most machinists have a difficult time with it, and it prevents them from moving forward smoothly.
As a prototype machining company, we try to hire people who have an open mind and are able to find solutions in this area, since we come across different CNC parts every day. (Of course, some people quit the job within two weeks!) Check out the different CNC workholding methods.
XTJ — ведущий OEM-производитель, который занимается предоставлением комплексных решений от прототипа до производства. Мы гордимся тем, что являемся сертифицированной системой управления качеством ISO 9001, и стремимся создавать ценность в каждом клиентском взаимодействии. Мы достигаем этого через сотрудничество, инновации, улучшение процессов и исключительное мастерство.
Knowing what type of cutting tool to use
After choosing the machines and deciding on the best way to make the parts, selecting the right cutting tools will help to achieve a tighter tolerance and better surface finish. In short, suitable cutting tools result in better components.
Here’s an example: milling ribs with draft might take hours using normal sphere cutting tools, but would require just a few minutes with a taper cutter.
So imagine how much time you could save when milling 10 pieces or more. Find out the differences between types of CNC cutting and machining tools.
What are the Advantages of CNC Machining?
CNC machining technologies have revolutionized the manufacturing industry by minimizing manual work and allowing for unparalleled levels of consistency and accuracy. It is often considered a modern boon due to its numerous advantages.
As a product designer, it is vitally important to know whether to stick with CNC machining or to design the parts for another manufacturing process.
Here is a brief overview of some of the key benefits:
Скорость производства
Production speed is one of the primary reasons which led to the vast and rapid spread of CNC machining. With CNC machining, it is possible to speed up production exponentially since it removes the limitations of human labor.
Последовательность
Computer Numerical Control machining ensures that all the parts created look and work the same. There is no possibility of human error. This leads to the fabrication of precision parts that serve their purpose as intended.
Reduction of Rejections
In conventional manufacturing processes using manual labor, there was a lot of human error, which resulted in rejections during quality control. This wasted a lot of time and resources. With CNC machining, the whole process is automated, which leads to fewer rejections.
Cost Saving
Labor costs include the salary paid to the labor, downtime during breaks, and the added benefits payments.
The accuracy, speed, efficiency, and automation of CNC machining reduce manufacturing costs by minimizing production times and labor hours. These savings can be passed along to customers, creating a competitive advantage and providing an opportunity for business reinvestment.
However, other factors affect CNC machining costs, like quantity, material selection, and geometry.
Многообразие материалов
CNC machining can be performed on practically any material with sufficient hardness.
Manufacturing Data Tracking
A CNC machine feeds manufacturing data that allows manufacturers to track the entire process for every part. They can learn about the exact machines every part went through during manufacturing. In case of a fault, the exact cause can be tracked immediately.
Точность
With CNC machining, it is possible to achieve accuracy on a micro level. Manufacturers can even push that limit with appropriate tools. Such a level of accuracy is not possible with manual operations.
XTJ — ведущий OEM-производитель, который занимается предоставлением комплексных решений от прототипа до производства. Мы гордимся тем, что являемся сертифицированной системой управления качеством ISO 9001, и стремимся создавать ценность в каждом клиентском взаимодействии. Мы достигаем этого через сотрудничество, инновации, улучшение процессов и исключительное мастерство.
What Materials Can Be Processed By CNC Machines?
CNC machining enables working on a wide range of materials. In fact, you do not need various machines for CNC machining materials that are different. Most types of CNC machines support multiple materials allowing them to switch between producing different machine parts with a slight change of tooling.
Металлы
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Alloys
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Пластик
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
Дерево
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
cURL Too many subrequests.
XTJ — ведущий OEM-производитель, который занимается предоставлением комплексных решений от прототипа до производства. Мы гордимся тем, что являемся сертифицированной системой управления качеством ISO 9001, и стремимся создавать ценность в каждом клиентском взаимодействии. Мы достигаем этого через сотрудничество, инновации, улучшение процессов и исключительное мастерство.